230 research outputs found

    Grain Alignment in Molecular Clouds

    Full text link
    One of the most informative techniques of studying magnetic fields in molecular clouds is based on the use of starlight polarization and polarized emission arising from aligned dust. How reliable the interpretation of the polarization maps in terms of magnetic fields is the issue that the grain alignment theory addresses. I briefly review basic physical processes involved in grain alignment.Comment: 8 papes, 1 figures, to appear in Zermatt proceeding

    Synthesized grain size distribution in the interstellar medium

    Get PDF
    We examine a synthetic way of constructing the grain size distribution in the interstellar medium (ISM). First we formulate a synthetic grain size distribution composed of three grain size distributions processed with the following mechanisms that govern the grain size distribution in the Milky Way: (i) grain growth by accretion and coagulation in dense clouds, (ii) supernova shock destruction by sputtering in diffuse ISM, and (iii) shattering driven by turbulence in diffuse ISM. Then, we examine if the observational grain size distribution in the Milky Way (called MRN) is successfully synthesized or not. We find that the three components actually synthesize the MRN grain size distribution in the sense that the deficiency of small grains by (i) and (ii) is compensated by the production of small grains by (iii). The fraction of each {contribution} to the total grain processing of (i), (ii), and (iii) (i.e., the relative importance of the three {contributions} to all grain processing mechanisms) is 30-50%, 20-40%, and 10-40%, respectively. We also show that the Milky Way extinction curve is reproduced with the synthetic grain size distributions.Comment: 10 pages, 6 figures, accepted for publication in Earth, Planets, and Spac

    Interstellar Grains: Effect of Inclusions on Extinction

    Get PDF
    A composite dust grain model which simultaneously explains the observed interstellar extinction, polarization, IR emission and the abundance constraints, is required. We present a composite grain model, which is made up of a host silicate oblate spheroid and graphite inclusions. The interstellar extinction curve is evaluated in the spectral region 3.4-0.1ÎĽm\mu m using the extinction efficiencies of the composite spheroidal grains for three axial ratios. Extinction curves are computed using the discrete dipole approximation (DDA). The model curves are subsequently compared with the average observed interstellar extinction curve and with an extinction curve derived from the IUE catalogue data.Comment: 10 pages, 3 figure

    Mapping the cold dust in edge-on galaxies at 1.2 mm wavelength

    Get PDF
    Using the IRAM 30-m telescope, we have mapped the 1.2mm continuum emission in NGC 891, NGC 5907 and NGC 4565. In particular this latter galaxy shows a weak, extended plateau that is correlated with HI in addition to the central peak and ring structure common to all these spirals. Moreover, the outer part of this dust emission of NGC 4565 is clearly warped. The average dust temperature in the outer parts is 15 K and the derived dust absorption cross section is very close to that predicted for the local diffuse clouds.Comment: 4 pages LaTeX plus gzipped tar-file, including style and 2 ps-figures; to be published in the proceeedings of the "Dust-Morphology" Conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Infrared Emission from Supernova Remnants: Formation and Destruction of Dust

    Full text link
    We review the observations of dust emission in supernova rem- nants (SNRs) and supernovae (SNe). Theoretical calculations suggest that SNe, particularly core-collapse, should make significant quantities of dust, perhaps as much as a solar mass. Observations of extragalactic SNe have yet to find anywhere near this amount, but this may be the result of observa- tional limitations. SN 1987A, in the process of transitioning from a SN to an SNR, does show signs of a significant amount of dust forming in its ejecta, but whether this dust will survive the passage of the reverse shock to be injected into the ISM is unknown. IR observations of SNRs have not turned up significant quantities of dust, and the dust that is observed is generally swept-up by the forward shock, rather than created in the ejecta. Because the shock waves also destroy dust in the ISM, we explore the question of whether SNe might be net destroyers, rather than net creators of dust in the universe.Comment: Published in the Springer Handbook of Supernova

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Star Formation in the Milky Way and Nearby Galaxies

    Full text link
    We review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies. Methods of measuring gas contents and star formation rates are discussed, and updated prescriptions for calculating star formation rates are provided. We review relations between star formation and gas on scales ranging from entire galaxies to individual molecular clouds.Comment: 55 pages, 15 figures, in press for Annual Reviews of Astronomy and Astrophysics; Updated with corrected equation 5, improved references, and other minor change

    Inside-Out Evacuation of Transitional Protoplanetary Disks by the Magneto-Rotational Instability

    Full text link
    How do T Tauri disks accrete? The magneto-rotational instability (MRI) supplies one means, but protoplanetary disk gas is typically too poorly ionized to be magnetically active. Here we show that the MRI can, in fact, explain observed accretion rates for the sub-class of T Tauri disks known as transitional systems. Transitional disks are swept clean of dust inside rim radii of ~10 AU. Stellar coronal X-rays ionize material in the disk rim, activating the MRI there. Gas flows from the rim to the star, at a rate limited by the depth to which X-rays ionize the rim wall. The wider the rim, the larger the surface area that the rim wall exposes to X-rays, and the greater the accretion rate. Interior to the rim, the MRI continues to transport gas; the MRI is sustained even at the disk midplane by super-keV X-rays that Compton scatter down from the disk surface. Accretion is therefore steady inside the rim. Blown out by radiation pressure, dust largely fails to accrete with gas. Contrary to what is usually assumed, ambipolar diffusion, not Ohmic dissipation, limits how much gas is MRI-active. We infer values for the transport parameter alpha on the order of 0.01 for GM Aur, TW Hyd, and DM Tau. Because the MRI can only afflict a finite radial column of gas at the rim, disk properties inside the rim are insensitive to those outside. Thus our picture provides one robust setting for planet-disk interaction: a protoplanet interior to the rim will interact with gas whose density, temperature, and transport properties are definite and decoupled from uncertain initial conditions. Our study also supplies half the answer to how disks dissipate: the inner disk drains from the inside out by the MRI, while the outer disk photoevaporates by stellar ultraviolet radiation.Comment: Accepted to Nature Physics June 7, 2007. The manuscript for publication is embargoed per Nature policy. This arxiv.org version contains more technical details and discussion, and is distributed with permission from the editors. 10 pages, 4 figure

    On Semiclassical Limits of String States

    Get PDF
    We explore the relation between classical and quantum states in both open and closed (super)strings discussing the relevance of coherent states as a semiclassical approximation. For the closed string sector a gauge-fixing of the residual world-sheet rigid translation symmetry of the light-cone gauge is needed for the construction to be possible. The circular target-space loop example is worked out explicitly.Comment: 12 page

    Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control

    Get PDF
    Engineering the spectral properties of fluorophores, such as the enhancement of luminescence intensity, can be achieved through coupling with surface plasmons in metallic nanostructures This process, referred to as metal-enhanced fluorescence, offers promise for a range of applications, including LEDs, sensor technology, microarrays and single-molecule studies. It becomes even more appealing when applied to colloidal semiconductor nanocrystals, which exhibit size-dependent optical properties, have high photochemical stability, and are characterized by broad excitation spectra and narrow emission bands. Other approaches have relied upon the coupling of fluorophores (typically organic dyes) to random distributions of metallic nanoparticles or nanoscale roughness in metallic films. Here, we develop a new strategy based on the highly reproducible fabrication of ordered arrays of gold nanostructures coupled to CdSe/ZnS nanocrystals dispersed in a polymer blend. We demonstrate the possibility of obtaining precise control and a high spatial selectivity of the fluorescence enhancement process
    • …
    corecore